アルミナ系球状人工砂の冷却能評価事例

山川産業 株式会社 〇小楠竜也、濱崎有也、川上 学 株式会社 宇部スチール 糸藤春喜、清中海舟

1. 緒 言

環境問題から脱クロマイト砂及び脱けい砂化が進 み、人工砂の採用が増加しつつある。しかし、人工 砂の物理的性質はあまり知られていない。鋳物の凝 固冷却挙動に大きな影響を与えるだけに、その把握 は極めて重要である。

そこで、本研究では、鋳鋼に対する人工砂の冷却 能を調査し、上記2種類の従来砂との対比を行った。 また、S/M比1.1と3.5の場合で鋳型の冷却能に大き な違いが見られたので、以下にその結果を報告する。

2. 実験方法

供試砂としてアルミナ系球状人工砂、クロマイト砂 及び高純度けい砂(各種砂の光学顕微鏡写真を図1、 化学成分を表1、粒度分布表を図2に示す)を用い、 けい砂を基準としてS/M比が1.1及び3.5となる大き さのフラン鋳型をそれぞれ用意した。鋳物温度測定 用 R 熱電対のセッティング位置は中心部(図3)とし、 溶湯材質はSCMnM3、鋳込重量106kgを鋳込んだ。

図1. 各種砂の光学顕微鏡写真 (上から順に人工砂、クロマイト砂、高純度けい砂)

表1. 各種砂の化学成分表(単位; mass%)

供試砂	Al ₂ O ₃	SiO ₂	Fe ₂ O ₃	Na ₂ O	CaO	MgO	K ₂ O	TiO ₂	Cr2O ₃
アルミナ系球状人工砂	71.41	20.45	2.54	0.09	0.28	0.44	0.95	3.47	0.00
クロマイト砂	14.79	0.34	28.39	0.01	0.09	9.48	0.01	0.62	46.25
高純度けい砂	0.29	99.54	0.02	0.03	0.01	0.01	0.08	0.00	0.00

図3. 冷却能測定用鋳型の方案及び熱電対位置(単位;mm)

図4. 金枠の拡大方向

表2. 各種鋳型の造型条件

	S/M比,釒	寿型重量	かさ比重	7ラン樹脂添加量 Wt%/砂	
1共武的	1	大	kg/m ³		
高純度けい砂	1.1	3.5	1500	0.9	
(基準)	(119kg)	(368kg)	1500		
アルミナ系	1.3	4.3	1000	1.0	
球状人工砂	(136kg)	(458kg)	1980		
クロマイト砂	1.9	6.4	0700	1.2	
	(202kg)	(678kg)	2760		

図5. 鋳型の配置写真(左から、人工砂、クロマイト砂、けい砂)

図6. 注湯の様子

3. 実験結果

実験によって得られた鋳物の冷却曲線を図7に示す。

 ・S/M比を1.1から3.5に変化させた場合、注湯~ 300℃までの鋳物の冷却所要時間は約2倍となった。
・S/M比1.1においては共析変態の温度域(約650℃ 付近)をはさんで、その前後で砂によって冷却能順 位が逆転する現象が確認された。一方、S/M比3.5 については、冷却能順位の逆転は見られなかった。

図7. S/M比1.1及び3.5の冷却曲線の比較

表3.各種鋳型の熱物性試験結果(気温20℃,湿度60%)

項目	熱伝導率 W/m・K	比熱 J/kg・K	かさ密度 kg/m ³	容積比熱 J/m ³ •K	熱拡散度 J/m ² •K•s ^{1/2}
アルミナ系球状人工砂	0.56	862	1980	1.71×10 ⁶	978
クロマイト砂	0.51	704	2760	1.94×10 ⁶	995
高純度けい砂	0.62	774	1500	1.16×10 ⁶	848

<u>熱物性に関する式</u> (1)熱拡散度 (J/m²·K·S^{1/2}) ={熱伝導率 (W/m·K) ×容積比熱 (J/m³·K)}^{1/2} (2) 容積比熱 (J/m³·K) =比熱 (J/kg/K) ×かさ密度 (kg/m³)

4. 考察及びまとめ

式(1)の熱拡散度に示される通り、各種鋳型の冷却 能は熱伝導率(熱伝導特性)と式(2)で表される容積比 熱(熱吸収特性)との関係によって定義されると考え られる。表4に示した通り、今回の実験においても 各種鋳型の冷却能順位は、表3に示した熱拡散度の 順位に概ね従っていたが、S/M比1.1の場合の650℃ 付近~300℃間のみ熱伝導率の順位に従う結果となっ た。S/M比1.1の場合、S/M比3.5と比較して鋳型の 熱容量が小さいため、早期に鋳型が高温となり、鋳 型が温まることによる熱吸収能が飽和し、冷却能に 対する熱伝導率の影響が支配的になったものと考え られる。

本実験条件における鋳物温度と、冷却に伴い鋳物 から放出される熱量が100%の効率で鋳型を温めた 場合に予想される鋳型温度との関係を図8に示す。 S/M比1.1の場合、S/M比3.5に対して鋳物の温度降 下に対する鋳型の温度上昇が大きく、より早期に鋳 物温度と鋳型温度が等しくなる(=鋳型の温度上昇に よる熱吸収能が飽和する)ことが予想される点からも、 S/M比1.1の場合の650℃以下の温度域において熱伝 導率が鋳型冷却能に支配的に影響した可能性は高い と考えられる。

このように、S/M比の変化により鋳型の冷却能に 対する熱伝導特性及び熱吸収特性の影響度に差が生 じ、結果的に各種砂の冷却能順位に影響を与える可 能性がある。

なお、一般的なS/M比3.5の場合においては、アル ミナ系球状人工砂には高純度けい砂より高い冷却能 が期待される。

表4. 各S/M比における各	S.種鋳型の冷却能順位
----------------	-------------

温度域	S/M比1.1	S/M比3.5
注湯後~650℃付近 (共析変態温度付近)	クロマイト>人工砂>けい砂	クロマイト>人工砂>けい砂
650℃付近~300℃ (共析変態温度付近)	けい砂>人工砂>クロマイト	クロマイト>人工砂>けい砂
冷却能順位	なが熱拡散度順位に従	う範囲

熱伝導率順位に従う範囲

図8. 各S/M比における鋳物の温度降下と鋳型温度上昇の関係

以上

