

2012年9月20日(金) 於;高知会館 糸藤 春喜

図 黒鉛粒の形状分類(JIS G 5502)とチャンキー黒鉛の形状

写真チャンキー黒鉛晶出事例(バンドソー面)

S.I.Karsay; Ductile Iron Production I (1992) P179

FIGURE 147 — A 5 \times 5 \times 10 inch (125 \times 125 \times 250 mm) Ductile Iron Casting Containing Chunk Graphite. The Presence of Chunk Graphite is Evidenced by the Dark Spots in the Thermal Center on a Saw-Cut Surface.

a.軽微(RW=6600Kg, t=185mm) b.多量(RW=4500Kg, t=210mm) c.多量(RW=36000Kg, t=245mm)

写真 厚肉品へのチャンキー黒鉛晶出事例

 200μ m

RW=4500Kg, t=210mm

写真 厚肉品へのチャンキー黒鉛晶出事例

糸藤春喜;鋳造工学84(2012)152

写真 チャンキィ黒鉛セルのSEM像

糸藤春喜;鋳造工学84(2012)152

50µ m

A. 片状黒鉛
 B. CV黒鉛
 C. 球状黒鉛
 図3 片状, CV及び球状黒鉛の光学顕微鏡組織(上段;一般光、下段;偏光)
 糸藤春喜;鋳造工学84(2012)152

50µ m

図4 弱偏光下におけるチャンキー黒鉛組織

糸藤春喜;鋳造工学84(2012)152

CV黒鉛

図 サイト説による球状黒鉛生成・成長・退化の模式図

H.ltofuji ; 京都大学学位論文(1993) P71.

図 チャンキィ黒鉛晶出に関する文献・論文数(1956~2003);欧米を中心に全62報

B. 対策

表 球状化及び接種処理剤の化学成分例(mass%)

用途	種類	Si	Mg	Ca	RE	AI	Ba	残
球状化処理	Fe-Si-5.5Mg	45	5.5	1.5	2.5	1.8	_	Fe
接種処理	Ca系Fe-Si	74	_	1.6	_	1.9	1.0	Fe

表 600mm立方体ブロックの化学成分(mass%)

No.	С	Si	Mn	Ρ	S	Ce	Mg	CE
1	3.46	2.07	0.14	0.045	0.008	0.001	0.058	4.14
2	3.47	2.05	0.14	0.046	0.009	0.012	0.056	4.15
3	3.48	2.02	0.14	0.047	0.009	0.021	0.038	4.16
4	3.46	2.02	0.14	0.048	0.008	0.030	0.055	4.14
5	3.34	2.55	0.15	0.056	0.011	0.002	0.054	4.12
6	3.47	2.55	0.14	0.045	0.012	0.014	0.053	4.28
7	3.50	2.54	0.14	0.047	0.012	0.021	0.056	4.32
8	3.52	2.54	0.14	0.049	0.014	0.029	0.048	4.34

図 厚肉材へのチャンキィ黒鉛晶出事例(600mm立方体)

宇部スチール、素形材(2005), 1, P12.

図 チャンキィ黒鉛を晶出させるための温度-時間スケジュール H.ltofuji ;京都大学学位論文(1993)P71. 17

図 凝固シミュレーション用実験炉(150×150×180mm、溶解量;1.5Kg)

H.Itofuji ;京都大学学位論文(1993)P71.

図 チャンキィ黒鉛を晶出させたマスター凝固冷却カー ブ、 及び凝固中での試料水冷ポイント

H.Itofuji ; 京都大学学位論文(1993) P71.

H.Itofuji ;京都大学学位論文(1993)P71.

H.Itofuji ;京都大学学位論文(1993)P71.

表 チャンキィ黒鉛を晶出させた試料の化学成分

=+ 小川		化学成分(mass%)							
武不升	С	Si	Mn	Ρ	S	Ca	Ce	Mg	CE
上層	3.45	2.96	0.21	0.048	0.005	0.0024	0.047	0.042	4.44
1									
中層	3.42	2.94	0.20	0.046	0.005	0.0037	0.047	0.035	4.40
上層	3.48	2.89	0.14	0.049	0.005	0.0014	0.041	0.044	4.44
2									
中層	3.42	2.88	0.15	0.048	0.005	0.0021	0.037	0.029	4.38
上層	3.34	2.89	0.13	0.047	0.005	0.0004	0.033	0.040	4.30
3									
中層	3.29	2.91	0.14	0.046	0.006	0.0012	0.022	0.035	4.26
上層	3.34	2.76	0.22	0.037	0.008	0.0030	0.035	0.044	4.26
4									
中層	3.30	2.78	0.22	0.036	0.009	0.0004	0.031	0.042	4.23
上層	3.31	2.83	0.19	0.042	0.014	0.0018	0.020	0.026	4.25
5									
中層	3.31	2.79	0.19	0.042	0.014	0.0053	0.020	0.026	4.24

23

表 FCDA-NiMn13 7の化学成分及び機械的性質

	化学成分(mass%)							機械的性質					比透磁率
分類	С	Si	Mn	Ni	Cr	Cu	CE	0.2%耐力 (N/mm2)	引張強さ (N/mm2)	伸び (%)	衝撃 _{2∨} E (J)	HB	μ (8KA/m)
JIS G 5510	≦3.00	2.00	6.00	12.00	≦0.20	≦0.50	_	≧210	≧390	≧15	≧16	_	_
本研究	2.50 ~3.00	~3.00 2.00) ~3.00	~7.00 4.00 ~7.00	~14.00 10.00 ~14.00	—	_	3.80 ∼4.20	≧210	≧390	≧15	≧16	130–170	≦1.02

CE=C+0.2Si+0.06Ni

型バラシ後

ショット及び熱バランサー切断後

図 FCDA NiMn 13 7試験材の外観

図 熱バランサー跡の加工面(FCDA NiMn 13 7)

図 加工面に現れたドーナツ状異色域と鋳造方案との関連

田村幹夫,李保柱,糸藤春喜;日本鋳造工学会, 136回全国講演大会(2001)81

田村幹夫,李保柱,糸藤春喜;日本鋳造工学会, 136回全国講演大会(2001)81

図2 ドーナツ状異色域例(黒皮より4 mm 加工)

夜し	イック杯	の化字成分	と球状黒鉛』	退化との関連	(Mass%)
					이상 가장 가장에 가장 가장 가장 가지 않는 것이 있는 것이 있다.

異色域	SiO ₂	AI_2O_3	M•AI	Fe ₂ O ₃	T•C	lg.loss	他
有	24.9	46.8	11.2	3.7	5.4	7.7	tr.
無	81.8	6.2	8 63	2.8	3.7	5.2	tr.

鋳放し外観 機械加工面:ドーナツ状分布

3.40C, 2.42Si, 0.19Mn, 0.042P, 0.012S, 0.008Ce, 0.057T • Mg

写真 シリンダへのチャンキー黒鉛晶出事例(FCD450, RW;3840Kg)

糸藤春喜「チャンキー黒鉛組織の意図的再現」中四国・九州合同研究会(2009)

原因;REフリー球状化剤の溶製時に全Chの残湯から混入 対策;全Chの球状化剤溶湯を全量出湯

写真 シリンダ加工面に現出の水玉模様(FCD450, RW;3840Kg)

糸藤春喜「チャンキー黒鉛組織の意図的再現」中四国・九州合同研究会(2009)

表 耐熱ケーシング用GGG-SiMo3.08の材質仕様

	化学成	分(mass ⁱ	%)	機械的性質 ¹⁾ ミクロ組織 ¹⁾²⁾						機械的性質 ¹⁾ ミクロ組織 ¹⁾²⁾						機械的性質1)			 ミクロ組織 ¹⁾²⁾				
С	Si	Мо	Mg	0.2%耐力 (N/mm ²)	引張強さ (N/mm ²)	伸び (%)	絞り (%)	黒鉛 形状	黒鉛 サイス [゛]	α率 (%)	炭化物 (%)	備考											
3.20 ~3.50	2.60 ∼3.40	0.70 ~0.90	<0.070	≧350	≧490	≧8	≧8	V+Ⅵ >90% Ⅲ+Ⅳ=残	4~7	> 80%	<3.0	鋳放し 正加工 }PT,MT,UT											

注1)T70×H130×L200mmベタ付け供試材

2)本体押湯部及び押湯間

図 冷却制御方案検討用の厚肉供試材(⁰600×t130mm, GGG-SiMo3.08)

糸藤春喜,田村幹夫,中西貴史;日本鋳造工学会,13④回全国講演大会(1999)54

図 GGG-SiMo3.08厚肉供試材へのチャンキィ黒鉛晶出状況

図 チャンキィ黒鉛(CG)発生傾向と凝固シミュレーションとの対応

糸藤春喜,田村幹夫,中西貴史;日本鋳造工学会,134回全国講演大会(1999)54

図 ^{300×t150mm}供試材の凝固冷却カーブ(GGG-SiMo3.08)

糸藤春喜,田村幹夫,中西貴史;日本鋳造工学会,134回全国講演大会(1999)54

(a) 1 atm, 0.08wt.-%Mg

(b) 10 atm, 0.45wt.-%Mg

(c) 15 atm, 1.02wt.-%Mg

(d) 20 atm. 0.98wt.-%Mg

Mg含有溶湯を種々の圧力下

で凝固させた時の黒鉛組織

山本、張、川野、尾崎、村上; Metal Science, Vol.12 (1978) May, P239-.

涛放し重量=7440Kg
Eジュラス =16.3cm (M=V/S)
冷金無⇒23時間で凝固
令金重量率=208%
令金面積率=97%
涛ぐるみ =φ 130×L970×2ヶ所
疑固時間 =153分

写真 1440×970×740mmブロック鋳放し外観(FCD450)

糸藤春喜「チャンキー黒鉛組織の意図的再現」中四国・九州合同研究会(2009)

ŧ

図 1440×970×740mmブロックへのチャンキィ黒鉛晶出

糸藤春喜「チャンキー黒鉛組織の意図的再現」中四国・九州合同研究会(2009)

まとめ

- 1. チャンキー黒鉛の防止は,以下をイメージすること が,最良の対策となる.
 - ① Mg気泡の導入,消失前に凝固させる.
 - ② Si濃度斑の導入,均一となる前に凝固させる.
 - ③ 溶湯処理~鋳込み~凝固開始までの時間を 極力短くする.
- チャンキー黒鉛組織は、生成メカニズムを理解し、
 現象を明確に把握することで防止できる.

200µm

0.5gの試料を光集光炉を用いて,黒鉛版上にて溶解・冷却.

中江らが定義するチャンキー黒鉛 义

中江秀雄;日本鋳造工学会,第142回全国講演大会(2003)59

200µm 図 鋳型ガスによる鋳物表面の黒鉛形状の劣化 ^{総合鋳物センター:研究調査報告書250(1978)50}

要因

図5 チャンキー黒鉛晶出を扱う文献の概要(1956~2010)

糸藤春喜;鋳造工学84(2012)152

43